Palladium-Catalyzed Reactions of Arylindium Reagents Prepared Directly from Aryl Iodides and Indium Metal

Papoian, V. and Minehan, T. *JOC*, ASAP, 8/22/2008

Gary Davis, Current Literature Presentation, 8/30/08

Introduction

- Why Indium?
 - -Closely parallels chemistry of transition metals (Zn, Sn) without toxicity problems
 - -Safe for the environment
 - -Mild and selective without use of cryogenic or inert conditions
- Preparation of organoindium reagents:
 - -Allylic halides and In(0) (J. Organomet. Chem. 1972, 40, C9.)
 - -Transmetalation between HgR₂ and In(0) (JACS, 1934, 56, 1047.)
 - -RLi or RMgBr and InX_n n = 1-3 (most common)

Reactions of Organoindium Reagents

Allylation

- J. Organomet. Chem. 1972, 40, C9.
- J. Organomet. Chem. 1974, 81, 329.

Cyclopropanation of deactivated olefins

$$Br_2C(CN)_2 \xrightarrow{In, Lil, DMF} NC \xrightarrow{CN} COMe$$

J. Chem. Soc., Chem. Commun. 1989, 1286.

Enantioenriched homopropargylic alcohols

JOC **1999**, 64, 696.

76%, 95:5 (anti:syn), 95% *ee*

Cross-couplings: General Cases

$$R_3$$
In + 3 $\frac{Pd(Ph_3P)_2Cl_2 cat.}{THF, reflux}$ 3 $\frac{R}{Me}$ 82-96%

$$R_3 \ln + 3 \qquad Pd(Ph_3P)_2 Cl_2 \text{ cat.} \qquad 3 \qquad 89-95\%$$

$$R_3$$
In + 3 $Pd(Ph_3P)_2Cl_2 cat.$ 3 $Pd(Ph_3P)_2Cl_2 cat.$ 3 $Pd(Ph_3P)_2Cl_2 cat.$ 90-97%

R = Ph, vinyl, Ph-acetylene, TMS-acetylene, n-Bu, Me, c-C₃H₅

Sarandeses et al., *Org. Lett.* 1(8), **1999**, 1267-69.

Benzylic, Acyl Chloride Cross-Coupling

R = Ph, vinyl, Ph-acetylene, TMS-acetylene

R = Ph, vinyl, Ph-acetylene, TMS-acetylene, Me

Sarandeses et al., JACS 2001, 123, 4155-4160.

Cross-Coupling in Aqueous Media

Ph₂InCl (0.65 mmol)
$$H_2O$$
 (0.5 mL) $R = I$, Br, OTf (1.0 mmol) $I = I$ I

Product Scope:

Oshima et al., OL 2001, 3, 1997.

8/30/08

Gary Davis, Current Lit.

Mechanistic Considerations

General Catalytic Cycle

May also involve a transient Pd-In complex prior to transmetalation as proposed by Marshall and others.

Chem. Rev. 2000, 100, 3163-3185.

Title Paper

- Preparation of organoindium reagents using In(0) and LiCl (As reported by Knochel for Zn, Mg, and Cu)
- Minimal activation of metal required
- Resulting organoindium reagents are air and moisture stable
- Indium can then be reduced with Zn to regenerate In(0)

Title Paper-Optimization

entry	M	X	solvent	T (°C)	time (h)	% yield 3a ^a
1	In	I	DMF	80	12	85
2	In	I	THF	65	12	20
3	In	I	DME	80	12	25
4	In	I	DMF^{b}	80	12	83
5	In	I	DMF	100	2	80
6	In	Br	DMF	100	12	45
7	InI	I	DMF	80	12	42
8	$InCl_2$	I	DMF	80	12	<10

^aRefers to isolated yields after column chromatography. ^bMethanol (10% by volume) was added to the DMF solution of the indium reagent just prior to the cross-coupling reaction.

Title Paper-Diversity of Aryl Iodides

^aFor the insertion reaction, conversions were assayed by GC-MS analysis of an aliquot quenched with HCl/H₂O. ^bRefers to isolated yields after column chromatography, unless otherwise indicted. ^cInsertion reaction performed at 120 °C for 12 h. ^dYield determined by GC-MS analysis. ^eSignificant amounts of homodimer 4 also produced. ^fCatalyst for cross-coupling was Cl₂Pd(PPh₃)₂.

Title Paper-Acyl and Allylic Electrophiles

$$MeO_2C \longrightarrow I \xrightarrow{In-2LiCI, DMF} \xrightarrow{R_1-X} MeO_2C \longrightarrow R_1$$
1
7

Entry	R ₁	X	Pd ^b	7	% Yield 7 e
1	4-Me-PhCO	Cl	A	7a	40
2	PhCH ₂ CH ₂ CO	Cl	Α	7b	45
3	$CH_2CH(CH_2)_3CO$	Cl	Α	7c	40
4	- Fr	OAc	В	7d	48
5	- ξ-	OCO_2Me	В	7e	51

^aTypical reaction conditions: a DMF solution of the indium reagent (\sim 0.81 M) was added to R₁-X (1.0 equiv) and palladium catalyst (5-10 mol %) and heated to 80 C under argon for 2 h, at which time complete consumption of R₁-X was observed by TLC. ^bA = 5 mol % Pd(PPh₃)₄; B = 10 mol % Pd(dba)₂. ^cRefers to isolated yields after column chromatography.

Limitations

 In in all forms is expensive when compared to Zn and Mg

Metal Species	Quanitity (g)	Cost (\$)	
In (powder)	5	125.50	
InCl	2	132.50	
$InCl_2$	10	127.50	
$InCl_3$	5	82.60	
Zn (dust)	1000	67.20	
Mg (turnings)	1000	79.40	

Regeneration process from paper still under investigation

Conclusions

- Demonstrated a wide variety of arylindium reagents can be prepared directly without transmetalation
- Pd cat. cross-coupling of arylindium reagents with arylindides proceeds in high yields
- Cross-coupling reactions can be done in the presence of protic solvents
- Reaction also occurs with acyl and allylic electrophiles